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Inelastically scattering particles and wealth distribution in an open economy
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Using the analogy with inelastic granular gases we introduce a model for wealth exchange in society. The
dynamics is governed by a kinetic equation, which allows for self-similar solutions. The scaling function has
a power-law tail, the exponent being given by a transcendental equation. In the limit of continuous trading, a
closed form of the wealth distribution is calculated analytically.
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I. INTRODUCTION

The distribution of wealth among individuals within a s
ciety was one of the first ‘‘natural laws’’ of economics@1#.
Indeed, its study was motivated by the desire to bring
accuracy attributed to natural sciences, namely physics
economic sciences. The celebrated Pareto law states tha
higher end of the wealth distribution follows a power-la
P(W);W212a with exponenta robust in time.

The validity of the Pareto law was questioned and re
amined many times but the core message, stating that the
of the distribution is a power law remains in force. There a
recent investigations, e.g., Refs.@2–5#, giving reasonable
empirical evidence for it. In fact, it is not so much the fun
tional form itself but its spatial and temporal stability that
intriguing. Indeed, while the value of the exponenta may
slightly vary from one society to another, the very fact of t
power-law tail in the distribution is valid almost everywher
Recent investigations suggest that the range of validity of
Pareto law may extend as far in the past as to the anc
Egypt of the Pharaohs@6#.

The universality of the power-law tail is surely a pheno
enon asking for explanation. Recently, there was a lot
effort establishing finally the multiplicative random pro
cesses repelled from zero as a mathematical source o
power-law distributions@7–20#. Alternatively, the killed mul-
tiplicative processes as sources of power laws were stu
in Ref. @4#. However, there are plenty of possible ways ho
the multiplicative random processes of this type come o
scene. One of the most studied implementations were
generalized Lotka-Volterra equations@10–13# and the anal-
ogy with directed polymers in random media@21–23#. Both
of these schemes are formalized by a kinetic equation
scribing the exchange of wealth between agents and gl
redistribution of wealth which plays the role of repellin
from zero. Related approaches were subsequently pursue
a number of studies and simulations@24–40#.

More recently, empirical studies of the lower end of t
wealth axis showed that the distribution of wealth is rath
exponential than a power law, while the high-wealth tail s
remains a power law@3,41,42#. This finding was interpreted
as a result of a conservation law for total wealth, leading
the robust Boltzmann-like exponential distribution, whatev
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the random wealth exchange be, in full analogy with t
energy distribution in a gas of elastically scattering m
ecules.

This, together with older studies within the same sp
@43#, lead to the view of economic activity as a scatteri
process of agents, analogous to inelastically scattering
ticles @29–31,44–47#. Indeed, the inelasticity is indispens
able to explain the power-law tail and it is also reasonable
suppose that the total wealth increases on average.

The numerical simulations performed to date confirm
emergence of power-law tail in agent-scattering proces
with great reliability. However, analytic insight is lacking i
most of the studies available today. The main concern of
work is to fill this gap, providing analytical results at lea
for a simplified model of wealth exchange. To comply wi
the task we will be guided by existing analytical approach
for models of inelastically scattering particles.

Inelastic scattering of particles was studied thoroughly
the context of granular materials@48#. The simplest one of
the models used is the Maxwell model, whose inelastic v
ant was investigated in detail@49–61#. More realistic models
of granular gases were also introduced@62,63# but their full
account goes beyond the topic of this work. The most imp
tant conclusion of these studies is that a self-similar solut
of the kinetic equations exist, which is not stationary in tim
but assumes time-independent form after proper rescalin
the energy. The tail of the scaling function becomes a po
law under certain condition.

The formalism developed for granular gases can
readily adapted for binary wealth exchange of agents.
deed, within the mean-field version of the Maxwell mod
the particles scatter randomly one with another irrespectiv
of their positions. This corresponds to randomly picki
pairs of agents for interaction, with no care of the~possibly
complex! structure of their relationships. In reality the ec
nomic activity goes along links in a complex social netwo
@64,65#. Indeed, recently there were investigations of the r
of network topology in wealth distribution@34,66#. We may
consider the present model as an approximation of that
work by a complete graph.

The main difference from the mean-field Maxwell mod
is that the energy of the granular gas decreases by diss
tion, while the average total wealth of the agents increa
due to the economic activity. The sign of the nonconser
tion is therefore opposite in the two cases. While the form
the equations may remain the same, the solution canno
©2004 The American Physical Society02-1
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directly continued from one domain to another. Therefo
while the case of dissipation is relatively well understoo
new approaches are needed in the case of production. Th
the aim of the present work.

II. INTERACTING AGENTS AS SCATTERING PARTICLES

A. Description of the process

Imagine a society ofN agents, each of which posse
certain wealthv i , i 51,2,...,N. From time to time the agent
interact in essentially instantaneous ‘‘collision’’ events, wh
a certain fraction of the wealth can be exchanged. Moreo
we suppose the system is open and the interaction can
lyze an increase of the total wealth of the two interact
agents. Indeed, the source of the human wealth lies bey
our society and the ultimate cause is the energy poured to
Earth from the Sun. Nonetheless, the external energy is
lized only through a human activity and we simplify th
problem by assuming that the net increase of wealth happ
at the very moments of agents’ interaction.

We also assume that only pairwise interaction occu
This may be a very crude assumption, as corporate decis
affect many agents simultaneously. However, we expect
presence of multilateral interactions does not affect the
sential mechanisms in work here.

The dynamics of our model is described as follows.
each time stept a pair of agents~i, j! is chosen randomly
They interact and exchange wealth according to the symm
ric rule

S v i~ t11!

v j~ t11! D5S 11e2b b

b 11e2b D S v i~ t !
v j~ t ! D . ~1!

All other agents leave their wealth unchanged,vk(t11)
5vk(t) for all k different from bothi and j. The parameter
bP~0,1! quantifies the wealth exchanged, whilee.0 mea-
sures the flow of wealth from the outside. The process
sketched schematically in Fig. 1.

This rule is similar to those studied in Refs.@43,53,56#
and simulated numerically in Refs.@29,31,44,47# but we

FIG. 1. Schematic picture of the scattering process, where
wealth is exchanged and produced.
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consider it slightly more realistic as it treats the agents ina
priori symmetric manner. It also embraces various source
wealth nonconservation within a single effective parametee.
In fact, also the formulation based on the similarity with t
problem of directed polymers@21,22# can be reduced to a
rule of the form similar to Eq.~1!. Therefore, we are study
ing a representative of a whole class of related models
we expect the analytical results we will present have rat
broad relevance.

B. Kinetic equation

Equation~1! describes a matrix multiplicative stochast
process of vector variablev(t) in discrete timet. Processes
of this type are thoroughly studied, e.g., in the context
granular gases. Indeed, if the variablesv i are interpreted as
energies corresponding toi th granular particle, we can ma
the process to the mean-field limit of the Maxwell model
inelastic particles. However, the energy dissipation conv
tionally quantified by the restitution coefficient implies no
the negative valuee,0, contrary to our assumptione.0. We
will see later that this apparently small variation makes
difference in the analytical treatment of the process.

The full information about the process in timet is con-
tained in the N-particle joint probability distribution
PN(t;v1 ,v2 ,...,vN). However, we can write a kinetic equa
tion involving only one- and two-particle distribution func
tions

P1~ t11;v !2P1~ t;v !

5
2

N F2P1~ t;v !1E P2~ t;v i ,v j !

3d„~12b1e!v i1bv j2v…dv idv j G ~2!

which may be continued to give eventually an infinite hie
archy of equations of BBGKY type. As a standard appro
mation we use the factorization

P2~ t;v i ,v j !5P1~ t;v i !P1~ t;v j ! ~3!

which breaks the hierarchy on the lowest level, neglect
the correlations between the wealth of the agents, induce
the scattering. In fact, this approximation becomes exact
N→`. Therefore, in thermodynamic limit the one-partic
distribution function bears all information.

Rescaling the time ast52t/N in the thermodynamic
limit N→`, we obtain for the one-particle distribution func
tion P(t;v)5P1(t,v) a Boltzmann-like kinetic equation

]P~v !

]t
1P~v !5E P~v i !P~v j !

3d„~12b1e!v i1bv j2v…dv idv j ~4!

which describes exactly the process~1! in the limit N→`.
This equation has the same form as the mean-field ver
for the well-studied Maxwell model of inelastically scatte
ing particles@54,56,57#. The main difference consists in th

e
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fact that here the wealth increases, while in inelastic gas
energy decreases. This seemingly little difference has, h
ever, deep consequences for the solution of Eq.~4!. Note also
that within the framework of Maxwell model the distribu
tions are expressed in terms of velocities, while our dyna
cal variables correspond rather to energies of the particl

III. SOLUTION OF THE KINETIC EQUATION

A. Self-similar solutions

Note first that the average wealthv̄5*vP(v)dv in the
process described by the kinetic equation~4! grows exponen-
tially

v̄~t!5 v̄~0!eet ~5!

and therefore Eq.~4! has no stationary solution. Howeve
we may look for a quasistationary self-similar solution in t
form @50,54,56,57#

P~t;v !5
1

v̄~t!
FS v

v̄~t! D . ~6!

Using the Laplace transformF̂(x)5*0
`F(w)e2xwdw we

can write a nonlocal differential equation for the scali
function in the form

exF̂8~x!1F̂~x!5F̂„~12b1e!x…F̂~bx!. ~7!

A hint about possible solutions can be obtained from
special exactly solvable casee522Ab12b. It can be eas-
ily verified @54# that the functionF̂1(x)5(11A2x)e2A2x is
a solution of Eq.~7!. Inverting the Laplace transform w
obtain the corresponding wealth distributionF1(w)
5(1/A2p)w25/2exp(21/2w) which has a similar form as
obtained in previous studies@13,21,22#. However, in this
case the value ofe is negative, which contradicts our a
sumption of wealth increase, while fore.0 the above idea
leading to the functionF̂1(x) does not work. Therefore, w
must look for alternative ways. The leading idea of our a
proach is that Eq.~7! is nearly local for small values ofe and
b. Therefore, we will expand the factors on the right-ha
side~RHS! of Eq. ~7! in Taylor series ine andb and perform
the limit e, b→0. As the parameterse and b quantify the
amount of wealth increase and exchange in a single tr
event, we interpret the latter limit as the limit of continuo
trading. In fact, such a limit should also involve a rescali
of time t, but because we are interested only in the station
regime, the explicit time dependence does not enter our c
siderations.

It should be also stressed that an important feature ca
inferred from the observation that the system behaves di
ently for positive and negativee. Indeed, it suggests a singu
larity at the point of precise conservation of wealthe50.

B. Power-law tails

The main concern in empirical studies of wealth distrib
tion is about the shape of tails, which assumes a power-
04610
e
-

i-
.

a

-

de

ry
n-

be
r-

-
w

form. The behavior of the distributionF(w) for w→` can
be deduced from the singularity of the Laplace transfo
F̂(x) at x→0. Therefore, we assume the following behav
@54,57#:

F̂~x!512x1Auxua1¯ for x→0, ~8!

whereaP~1,2!. This type of singularity results in the powe
law tail as F(w);w2a21 for w→`. Insertion of Eq.~8!
into Eq. ~7! leads to a transcendental equation for the ex
nenta

~11«2b!a1ba212«a50 ~9!

the solution of which is illustrated in Fig. 2. Obviously, the
is always a trivial solutiona51. The power-law tail is due to
another, nontrivial solution, which falls into the desired i
terval~1, 2! only for certain values of the parametersb ande.
We can see the allowed region in Fig. 3; a solution in t
rangeaP~1,2! exists within the shaded region. We can al
see that fixed value ofa defines a line in theb-e plane. We
can approach the limite→0, b→0 while keepinga constant.

FIG. 2. Solution of the equationf 0(b,e,a)[(11e2b)a1ba

212ea50 for e50.1 and b50.0025 ~full line! and b50.004
~dashed line!.

FIG. 3. Solution in the rangeaP~1,2! exists within the shaded
region. The dashed line corresponds toa52, the dash-dotted line to
a51, and the full line to the solutiona53/2.
2-3
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This is to be interpreted as continuous trading, as the am
of wealth exchange and increase in a single trading ste
infinitesimally small. Making this, the nonlocal terms in E
~7! become local and we can expect to obtain an ordin
differential equation, soluble by standard methods.

C. Continuous trading limit

Indeed, expanding Eq.~9! we obtain the following for-
mula relatingb ande for fixed a in the limit of continuous
tradingb→0, e→0:

b5
a21

2
e21O~e3!1O~e2a!. ~10!

The leading correction term to Eq.~10! depends on the valu
of a; for 1,a,3/2 it is of orderO(e2a), for 3/2,a,2 it is
of orderO(e3), while in the special pointa53/2 we should
include both correction terms, as they are of the same o
O(e3). Systematic expansion ine is developed in the Appen
dix.

Taking the same limit with fixeda in Eq. ~7! we obtain,
using Eq.~10!, the following equation:

2
1

2
xF̂9~x!1

a21

2
„F̂8~x!1F̂~x!…50. ~11!

Of the two independent solutions of Eq.~11! only one has
correct asymptoticsF̂(x)→0 for x→1`. It can be ex-
pressed using modified Bessel function

F̂~x!5C8xa/2Ka~2Aa21Ax!, ~12!

where the constantC8 is fixed by the normalizationF̂(0)
51. Inverting the Laplace transform we finally obtain th
wealth distribution

F~w!5Cw2a21 expS 2
a21

w D ~13!

with C5(a21)a/G(a).
We can see that the distribution obtained exhibits the

sired power-law behavior for large wealth. Moreover, it ha
maximum at a finite value ofw5wmax[(a21)/(a11) and
depression for low wealth values. The size of the depletio
determined by the exponential term in Eq.~13!, i.e., by the
same value ofa which determines the power in the pow
law. This corresponds to the idea presented, e.g., in Ref.@11#
stating that it is the value of the lower bound for the allow
wealth which determines the value of the exponent. He
however, this result comes purely formally as a result of
analytic computation. In our approach it is the interplay b
tween wealth increase~parametere! and wealth exchange
~parameterb! that dictates the value of the exponenta.

D. Corrections for finite trading in one step

Expanding Eq.~7! in powers ofe andb it is possible to
include systematic corrections to Eq.~11! and therefore cor-
rections to wealth distribution~13! for a finite amount of
04610
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wealth increase and exchange in single trading step. De
of the calculations are given in the Appendix; here we o
summarize the results.

The expansion~10! of the parameterb in powers ofe can
be continued as

b5
a21

2
e21

1

a S a21

2 D a

e2a

2
~a21!~2a21!

6
e31O~e4!1O~e4a22!. ~14!

Correspondingly, the wealth distribution, expanded in po
ers ofe is

F~w!5
~a21!a

G~a!
w212a expS 12a

w D
3F11

a21

3 S 2a

w
2

a21

w2 2n10D e

2
2

a S a21

2 D aS ln w1
1

w
2n01D e2~a21!G

1O~e4!1O~e4a22!, ~15!

where the constantsn01 andn10 are given in the Appendix.
We show in Fig. 4 the wealth distribution according to E
~15! for a51.7 and several positive values ofe, namely for
e50.03, 0.1, and 0.3. We can see that the distribution
affected mainly at small values of wealth, shifting the ma
mum toward smallerw when e increases. On the contrary
the tail of the distribution is nearly unaffected, showing un
versal and robust power-law behavior.

Let us stress again that the solution known fore,0 cannot
be properly continued to the region ofe.0, due to the pres-
ence of singularity ate50. The singularity can be seen, e.g
in the behavior of the solution of Eq.~9!, as shown in Fig. 5.
However, fora53/2 the formula~13! describes the solution
of Eq. ~7! on both limitse→01 and e→02. This implies
that the singularity is rather weak, because the solution

FIG. 4. Wealth distribution according to Eq.~15! for e→0 ~full
line!, e50.03 ~dashed line!, e50.1 ~dash-dotted line!, and e50.3
~dotted line!.
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INELASTICALLY SCATTERING PARTICLES AND . . . PHYSICAL REVIEW E69, 046102 ~2004!
Eq. ~7! is continuous ine, and only the derivative with re
spect ofe has a jump ate50. One may speculate about th
fate of the singularity if we allowede and b not fixed pa-
rameters but random processes themselves. Most prob
the singularity would vanish but final answer is left for futu
work.

IV. CONCLUSIONS

We formulated a model of wealth production and e
change, where agents randomly interact pairwise. Using
analogy with the mean-field version of the Maxwell mod
for inelastic scattering of granular particles we obtain a
lytical results for the wealth distribution.

The dynamics of the model is governed by a kinetic eq
tion for one-particle distribution function. We look for sel
similar scaling solutions, corresponding to redefining the u
of wealth after each wealth increase. The form of these
lutions is given by a nonlocal differential equation, exac
soluble only in the practically irrelevant case of net wea
decrease. Therefore we turned to approximation scheme

First, we looked at the behavior for large wealth. The t
of the wealth distribution has a power-law form, and its e

FIG. 5. Solution of Eq.~9! for a53/2 in the rangese.0 ~full
line! and e,0 ~dashed line!. Note the singularity ate50 which
means that we must skip from one of the three solutions of Eq.~9!
to another one.
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ponenta is determined by the interplay between the intens
of the wealth exchange and the amount of wealth produc
The form line in theb-e plane with fixeda is found, depend-
ing quadratically one for e→0. The physically allowed val-
ues aP~1,2! determine a horn-shaped region in theb-e
plane.

The second approximation consisted in taking the limit
continuous trading, meaning small wealth production a
small exchange within a single trading operation, wh
keeping the exponenta constant. Here we obtained close
formula for the entire wealth distribution, which has
power-law tail as expected and a maximum at certain~low!
wealth value. The form of the wealth distribution corr
sponds to those found in previous studies@13,21,22#. It is
interesting to note that this general form has one-to-one
respondence between the positionwmax of the maximum of
the distribution and the value of the exponent. There are
agents having wealth belowwmax. This suggests that the
intuition formalized, e.g., in Refs.@11,13#, that the exponent
is ‘‘tuned’’ by the low-wealth behavior of the distribution
may be in work quite generally. Here, the free parameters
apparently the wealth production and exchange, but in rea
these parameters may be themselves tuned by a mecha
which fixes the position of the maximum of the wealth d
tribution, i.e., the lowest wealth compatible with survival.

However, there is still open question of the specific valu
of the exponent, which are quite robust in different societi
It seems, also on the basis of our results, that it canno
explained by the bare mechanism of economic exchange
some other ingredient, possibly of sociological origin, is
quired.
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APPENDIX: SYSTEMATIC EXPANSION
FOR SMALL e AND b

Let us start with the special valuea53/2. Here, Eq.~9!
has an explicit solution in the form
e5
1

8

23Ab117b229b3/2115b214b5/224b31)A~322Ab!b~2Ab11!3~Ab21!6

Ab23b13b3/22b2
. ~A1!
However, the nonlocal differential equation~7! still does not
yield explicit solution. Inverting the expression~A1! we get
the following series expansion:

b5
1

4
e22

1

12
e31

1

16
e42

7

144
e51

113

2592
e61O~e7!. ~A2!
For general value ofa the variableb is expressed as a
series in two small parameterse andh5e2(a21), which co-
incide only if a53/2. Therefore, we can write

b5e2 (
m,n50

`

bmne
m12~a21!n ~A3!
2-5
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and the various terms take variable precedence in the o
of smallness whene→0, depending on the value ofa. For
the first several coefficients we have

b005
a21

2
, ~A4!

b1052
~a21!~2a21!

6
, ~A5!

b015
1

a S a21

2 D a

. ~A6!

Starting from the expansion~A3! we can convert the firs
order nonlocal differential equation~7! for F̂(x) into
infinite-order local differential equation forF(w). The price
to pay for it is that the coefficients in the latter equati
contain the momentsmk5*F(w)wkdw of the solution itself.
Indeed, we can write

F̂„~12n1e!x…5 lim
y→x

expS ~e2b!x
d

dyD F̂~y!, ~A7!

F̂~bx!5 lim
y→0

expS bx
d

dyD F̂~y!. ~A8!

Therefore, we obtain a linear combination of terms of t
following form:

xm1n
dmF̂~x!

dxm

dnF̂~0!

dxn ~A9!

which, after inverse Laplace transform, give rise to terms

~21!m1nmn

dm1n

dwm1n @wmF~w!#. ~A10!

However, the first two moments are fixed by definitio
Indeed, the normalization of the probability distribution fix
the zeroth moment and the fixed average wealth, impose
the scaling condition~6! fixes the first moment, so thatm0
5m151. This consideration leads to the equations for low
correction to the solution~13! , which are free of unknown
higher moments.

Generally, the solution can be then expressed in the f
of the series in powers ofe ande2(a21)
,

04610
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F~w!5F0~w! (
m,n50

`

fmn~w!em12~a21!n. ~A11!

We assumef00(w)51. The normalization must be indepen
dent ofe, which can be written as

E
0

`

F0~w!fmn~w!dw5dm0dn0 . ~A12!

Therefore, the lowest term obeys the equation

w2

2
F08~w!1S a21

2
w2

a21

2 DF0~w!50 ~A13!

which has the following solution satisfying the normalizatio
~A12!:

F0~w!5
~a21!a

G~a!
w212a expS 12a

w D . ~A14!

Indeed, it coincides with the result of Eq.~13!.
The next two terms satisfy the following equations:

w2

2
f108 ~w!5

a21

3 S a2
a21

w D , ~A15!

w2

2
f018 ~w!52

1

a S a21

2 D a

~w21! ~A16!

which can be easily solved. We obtain

f10~w!52
a21

3 S 2a

3
2

a21

w2 2n10D , ~A17!

f01~w!52
2

a S a21

2 D aS ln w1
1

w
2n01D ~A18!

and the constantsn01, n10 are fixed by the normalization
condition ~A12!. We find explicitly

n105a, ~A19!

n015 ln~a21!2C~a!1
a

a21
, ~A20!

where C(x)5G8(x)/G(x) is the logarithmic derivative of
the gamma function.
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