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Inelastically scattering particles and wealth distribution in an open economy
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Using the analogy with inelastic granular gases we introduce a model for wealth exchange in society. The
dynamics is governed by a kinetic equation, which allows for self-similar solutions. The scaling function has
a power-law tail, the exponent being given by a transcendental equation. In the limit of continuous trading, a
closed form of the wealth distribution is calculated analytically.
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I. INTRODUCTION the random wealth exchange be, in full analogy with the
energy distribution in a gas of elastically scattering mol-

The distribution of wealth among individuals within a so- ecules.
ciety was one of the first “natural laws” of economigs]. This, together with older studies within the same spirit
Indeed, its study was motivated by the desire to bring th¢43], lead to the view of economic activity as a scattering
accuracy attributed to natural sciences, namely physics, tprocess of agents, analogous to inelastically scattering par-
economic sciences. The celebrated Pareto law states that theles [29-31,44—47. Indeed, the inelasticity is indispens-
higher end of the wealth distribution follows a power-law able to explain the power-law tail and it is also reasonable to
P(W)~W 1"« with exponenta robust in time. suppose that the total wealth increases on average.

The validity of the Pareto law was questioned and reex- The numerical simulations performed to date confirm the
amined many times but the core message, stating that the taimergence of power-law tail in agent-scattering processes
of the distribution is a power law remains in force. There arewith great reliability. However, analytic insight is lacking in
recent investigations, e.g., Ref2-5], giving reasonable most of the studies available today. The main concern of our
empirical evidence for it. In fact, it is not so much the func- work is to fill this gap, providing analytical results at least
tional form itself but its spatial and temporal stability that is for a simplified model of wealth exchange. To comply with
intriguing. Indeed, while the value of the exponentmay  the task we will be guided by existing analytical approaches
slightly vary from one society to another, the very fact of thefor models of inelastically scattering particles.
power-law tail in the distribution is valid almost everywhere.  Inelastic scattering of particles was studied thoroughly in
Recent investigations suggest that the range of validity of théhe context of granular materia48]. The simplest one of
Pareto law may extend as far in the past as to the anciemhe models used is the Maxwell model, whose inelastic vari-
Egypt of the Pharaohs]. ant was investigated in det§#9—61. More realistic models

The universality of the power-law tail is surely a phenom-of granular gases were also introdudé@,63 but their full
enon asking for explanation. Recently, there was a lot oiccount goes beyond the topic of this work. The most impor-
effort establishing finally the multiplicative random pro- tant conclusion of these studies is that a self-similar solution
cesses repelled from zero as a mathematical source of thuf the kinetic equations exist, which is not stationary in time,
power-law distribution§7—-20]. Alternatively, the killed mul-  but assumes time-independent form after proper rescaling of
tiplicative processes as sources of power laws were studietthe energy. The tail of the scaling function becomes a power
in Ref.[4]. However, there are plenty of possible ways howlaw under certain condition.
the multiplicative random processes of this type come onto The formalism developed for granular gases can be
scene. One of the most studied implementations were theeadily adapted for binary wealth exchange of agents. In-
generalized Lotka-Volterra equatiof0—13 and the anal- deed, within the mean-field version of the Maxwell model
ogy with directed polymers in random med21-23. Both  the particles scatter randomly one with another irrespectively
of these schemes are formalized by a kinetic equation desf their positions. This corresponds to randomly picking
scribing the exchange of wealth between agents and globghirs of agents for interaction, with no care of tfp®ssibly
redistribution of wealth which plays the role of repelling complex structure of their relationships. In reality the eco-
from zero. Related approaches were subsequently pursued hgmic activity goes along links in a complex social network
a number of studies and simulatioft—40. [64,65. Indeed, recently there were investigations of the role

More recently, empirical studies of the lower end of theof network topology in wealth distributiof84,66. We may
wealth axis showed that the distribution of wealth is ratherconsider the present model as an approximation of that net-
exponential than a power law, while the high-wealth tail still work by a complete graph.
remains a power lay3,41,43. This finding was interpreted The main difference from the mean-field Maxwell model
as a result of a conservation law for total wealth, leading tds that the energy of the granular gas decreases by dissipa-
the robust Boltzmann-like exponential distribution, whatevertion, while the average total wealth of the agents increases

due to the economic activity. The sign of the nonconserva-
tion is therefore opposite in the two cases. While the form of
*Electronic address: slanina@fzu.cz the equations may remain the same, the solution cannot be
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The Sun consider it slightly more realistic as it treats the agentsa in
o priori symmetric manner. It also embraces various sources of
Vi wealth nonconservation within a single effective parameter
O In fact, also the formulation based on the similarity with the
problem of directed polymerg21,22 can be reduced to a
rule of the form similar to Eq(1). Therefore, we are study-
o ing a representative of a whole class of related models and
we expect the analytical results we will present have rather
broad relevance.

~=

B. Kinetic equation

® Equation(1) describes a matrix multiplicative stochastic
v ° process of vector variable(t) in discrete timet. Processes

J ij of this type are thoroughly studied, e.g., in the context of
granular gases. Indeed, if the variablgsare interpreted as

FIG. 1. Schematic picture of the scattering process, where thenergies corresponding tth granular particle, we can map
wealth is exchanged and produced. the process to the mean-field limit of the Maxwell model of

inelastic particles. However, the energy dissipation conven-
directly continued from one domain to another. Thereforetionally quantified by the restitution coefficient implies now
while the case of dissipation is relatively well understood,the negative value<0, contrary to our assumptics>0. We
new approaches are needed in the case of production. Thatusll see later that this apparently small variation makes big
the aim of the present work. difference in the analytical treatment of the process.

The full information about the process in tinhés con-
tained in the N-particle joint probability distribution
Pn(tivg,va,...,0N). However, we can write a kinetic equa-
A. Description of the process tion involving only one- and two-particle distribution func-
tions

II. INTERACTING AGENTS AS SCATTERING PARTICLES

Imagine a society olN agents, each of which possess
pertain vyealth;i , _i =1,.2,...N. From time t_o .time the agents Py(t+1:0)—Py(tiv)
interact in essentially instantaneous “collision” events, when
a certain fraction of the wealth can be exchanged. Moreover,
we suppose the system is open and the interaction can cata- N
lyze an increase of the total wealth of the two interacting
agents. Indeed, the source of the human wealth lies beyond
our society and the ultimate cause is the energy poured to the
Earth from the Sun. Nonetheless, the external energy is uti-
lized only through a human activity and we simplify the which may be continued to give eventually an infinite hier-
problem by assuming that the net increase of wealth happeragchy of equations of BBGKY type. As a standard approxi-

_Pl(t,v)+J Pz(t;Ui ,Uj)

X 8((1— B+ €)vi+ Bv;—v)dv;dv; (2

at the very moments of agents’ interaction. mation we use the factorization
We also assume that only pairwise interaction occurs.
This may be a very crude assumption, as corporate decisions Pa(tiviv)) =Pu(tvi)Pa(tiv) ©)

affect many agents simultaneously. However, we expect the

presence of multilateral interactions does not affect the es/Nich breaks the hierarchy on the lowest level, neglecting

sential mechanisms in work here. tEe correlaf[ions bitweeﬂ_the Wealt_h of_thet;igents, inducedf by
The dynamics of our model is described as follows. inthe scattering. In fact, this approximation becomes exact for

each time step a pair of agentsi, j) is chosen randomly. N—oo. Therefore, in thermodynamic limit the one-particle

They interact and exchange wealth according to the symmeflistribution function bears all information. _
Rescaling the time as=2t/N in the thermodynamic

ric rule
limit N— oo, we obtain for the one-particle distribution func-
(Ui(t+ 1)) 1+e—pB B )(Ui(t)) tion P(7;v)=P4(t,v) a Boltzmann-like kinetic equation
vi(t+1)) | B 1+e—p/\vj(1))" IP(v)

- 97 +P(U):f P(U|)P(UJ)

All other agents leave their wealth unchangeg(t+1)

=uv(t) for all k different from bothi andj. The parameter X 8(1— B+ e€)v;+Bvj—v)dvdv; (4)

Be(0,1) quantifies the wealth exchanged, whide0 mea-

sures the flow of wealth from the outside. The process isvhich describes exactly the procegds in the limit N— .

sketched schematically in Fig. 1. This equation has the same form as the mean-field version
This rule is similar to those studied in Refl3,53,5  for the well-studied Maxwell model of inelastically scatter-

and simulated numerically in Ref$29,31,44,47 but we ing particles[54,56,57. The main difference consists in the

046102-2



INELASTICALLY SCATTERING PARTICLES AND.. .. PHYSICAL REVIEW E69, 046102 (2004

fact that here the wealth increases, while in inelastic gas the 0.06 - . .
energy decreases. This seemingly little difference has, how- - \
ever, deep consequences for the solution of(Eq.Note also :
that within the framework of Maxwell model the distribu- 0.04
tions are expressed in terms of velocities, while our dynami-
cal variables correspond rather to energies of the particles. ii 0.03 |
= 0.02 |
I1l. SOLUTION OF THE KINETIC EQUATION L
A. Self-similar solutions oaLT
Note first that the average wealth= fvP(v)dv in the 0
process described by the kinetic equatiéhgrows exponen- Gl ) , ,
tially T 05 1 15 2 25
_ _ a
v(7)=v(0)e” (5

FIG. 2. Solution of the equatiofiy(B,€,a)=(1+¢e—B)“+ B~
and therefore Eq(4) has no stationary solution. However, —1—ea=0 for e=0.1 and 8=0.0025 (full line) and 8=0.004
we may look for a quasistationary self-similar solution in the (dashed ling
form [50,54,56,57

form. The behavior of the distributio® (w) for w—oo can

1 ® v 5 be deduced from the singularity of the Laplace transform
P(T’U)_v_(r) v(n)) ©® d(x) atx— 0. Therefore, we assume the following behavior
[54,57:

Using the Laplace transforrﬁ)(x)=f‘§<1>(w)e*Xde we . .
can write a nonlocal differential equation for the scaling D(x)=1-x+A[x|"+:-- for x—0, ()

function in the form whereae(1,2). This type of singularity results in the power-

law tail as®(w)~w ¢! for w—o. Insertion of Eq.(8)
into Eq. (7) leads to a transcendental equation for the expo-
Jnente

ex®' (X)+ P (x)=D(1— B+ €)x)D(BX). 7)

A hint about possible solutions can be obtained from
special exactly solvable cage= —A2 JB+2B. It can be eas- (1+e—B)+B*—1—ea=0 (9)
ily verified [54] that the functiond,(x) = (1+ 2x)e ¥ is
a solution of Eq.(7). Inverting the Laplace transform we the solution of which is illustrated in Fig. 2. Obviously, there
obtain the corresponding wealth distributiod(w) is always a trivial solutiorr=1. The power-law tail is due to
= (1/\2m)w~¥2exp(—1/2w) which has a similar form as another, nontrivial solution, which falls into the desired in-
obtained in previous studiel3,21,23. However, in this terval(1, 2) only for certain values of the paramet@snde.
case the value of is negative, which contradicts our as- We can see the allowed region in Fig. 3; a solution in the
sumption of wealth increase, while fer>0 the above idea rangeac(1,2) exists within the shaded region. We can also
leading to the functiorb,(x) does not work. Therefore, we S€€ that fixed value ok defines a line in thgg-e plane. We
must look for alternative ways. The leading idea of our ap-c@n approach the limié—0, 3—0 while keepinga constant.
proach is that Eq.7) is nearly local for small values afand
B. Therefore, we will expand the factors on the right-hand
side(RHYS) of Eq.(7) in Taylor series ire and 8 and perform

1 T T T

the limit ¢, B—0. As the parameters and 8 quantify the 08
amount of wealth increase and exchange in a single trade
event, we interpret the latter limit as the limit of continuous 06|

trading. In fact, such a limit should also involve a rescaling
of time 7, but because we are interested only in the stationary
regime, the explicit time dependence does not enter our con- 04
siderations.

It should be also stressed that an important feature can be 02|
inferred from the observation that the system behaves differ-
ently for positive and negative Indeed, it suggests a singu-
larity at the point of precise conservation of weadthO. 0

<

B. Power-law tails . . .
FIG. 3. Solution in the range (1,2 exists within the shaded

The main concern in empirical studies of wealth distribu-region. The dashed line correspondsite2, the dash-dotted line to
tion is about the shape of tails, which assumes a power-law=1, and the full line to the solutioa=3/2.
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This is to be interpreted as continuous trading, as the amount ' Empes ' '
of wealth exchange and increase in a single trading step is 1 i
infinitesimally small. Making this, the nonlocal terms in Eq.

(7) become local and we can expect to obtain an ordinary
differential equation, soluble by standard methods. 0.l

C. Continuous trading limit 5 0.01

Indeed, expanding Eq9) we obtain the following for-
mula relatingB and e for fixed « in the limit of continuous :
trading 8—0, e—0: 0.001

B= a2 €+ 0(€’)+0(e%9). (10 0.0001 Li

w

The leading correction term to EQLO) depends on the value
of a; for 1<a<3/2 it is of orderO(€2%), for 3/2<a<2 itis FIG. 4. Wealth distribution according to E€L5) for e—0 (full
of orderO(€%), while in the special poin=3/2 we should line), e=0.03 (dashed ling €=0.1 (dash-dotted ling and e=0.3
include both correction terms, as they are of the same ordédgotted line.

0O(€%). Systematic expansion inis developed in the Appen-

dix. wealth increase and exchange in single trading step. Details
Taking the same limit with fixedr in Eq. (7) we obtain, ~Of the calculations are given in the Appendix; here we only
using Eq.(10), the following equation: summarize the results.

The expansiorn10) of the parameteB in powers ofe can

1. a—1 . R be continued as
— Exfb”(x)+ T((IJ’(X)Jr(I)(x)):O. (11

a—1 1/a—1\¢
. . B= 4 —| ——| €2

Of the two independent solutions of E@.1) only one has 2 al\l 2
correct asymptoticsb(x)—0 for x— +%. It can be ex- (a—1)(2a—1)
pressed using modified Bessel function — 5 eE+0(eH+0(e**2). (14

T _~ryal2 [ _

P(X)=C'x"Ky(2Va 1%, (12) Correspondingly, the wealth distribution, expanded in pow-

- ers ofe is
where the constant’ is fixed by the normalizatiorb (0) ¢
=1. Inverting the Laplace transform we finally obtain the (a=1)* _, l-«a
wealth distribution d(w)= ) W —
P a—1 a—1[2a a—1

d(w)=Cw exp( W (13 X1+ ——| 7~ w7 Vo€

with C=(a—21)*/T'(«). 2[a—1\¢ 1 B
o . . 2= [ nwt == 2(a—1)
We can see that the distribution obtained exhibits the de- al 2 Wy Yol €

sired power-law behavior for large wealth. Moreover, it has a . o
maximum at a finite value ofv=wm,=(a—1)/(e+1) and +0O(€")+0(e™™9), (19

depression for low wealth values. The size of the depletion is _ . .
determined by the exponential term in EG3), i.e., by the Where the constantsy, and vy, are given in the Appendix.
same value ofx which determines the power in the power We show in Fig. 4 the wealth Q|§tr|but|on according to Eq.
law. This corresponds to the idea presented, e.g., in[REF. (15) for a=1.7 and several positive values afname_ly fF’r )
stating that it is the value of the lower bound for the allowed€_0-03, 0.1, and 0.3. We can see that the distribution is
wealth which determines the value of the exponent. Hereff“cfected mainly at small valueg of wealth, shifting the maxi-
however, this result comes purely formally as a result of thdnum toward smallew when e increases. On the contrary,
analytic computation. In our approach it is the interplay be_the tail of the distribution is nearly qnaffected, showing uni-
tween wealth increaséparametere) and wealth exchange Versal and robust power-law behavior.
(parameterB) that dictates the value of the exponent Let us stress again that the so'lutlon knownédaiO cannot
be properly continued to the region ef-0, due to the pres-

ence of singularity at=0. The singularity can be seen, e.g.,
in the behavior of the solution of E9), as shown in Fig. 5.
Expanding Eq(7) in powers ofe and 8 it is possible to  However, fora=3/2 the formula(13) describes the solution
include systematic corrections to Edd) and therefore cor- of Eq. (7) on both limitse—0" and e—0~. This implies
rections to wealth distributioril3) for a finite amount of that the singularity is rather weak, because the solution of

D. Corrections for finite trading in one step
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0.3 —=r T ponenta is determined by the interplay between the intensity
of the wealth exchange and the amount of wealth produced.
025 % 1 The form line in theB-e plane with fixeda is found, depend-
kY ing quadratically ore for e—~0. The physically allowed val-
02 K 1 ues ae(1,2) determine a horn-shaped region in tifkee
5 plane.
S o5} ] The second approximation consisted in taking the limit of
2 continuous trading, meaning small wealth production and
01F 3 ] small exchange within a single trading operation, while
keeping the exponent constant. Here we obtained closed
0.05 | 1 formula for the entire wealth distribution, which has a
i power-law tail as expected and a maximum at certbw)
0 _0'4 _0'2 wealth value. The form of the wealth distribution corre-

sponds to those found in previous studjd$,21,23. It is
interesting to note that this general form has one-to-one cor-
FIG. 5. Solution of Eq(9) for @=3/2 in the rangeg>0 (full  respondence between the positiop,, of the maximum of
line) and e<0 (dashed ling Note the singularity at=0 which  the distribution and the value of the exponent. There are few
means that we must skip from one of the three solutions of q. agents having wealth belowr,,,. This suggests that the
to another one. intuition formalized, e.g., in Ref§11,13, that the exponent
is “tuned” by the low-wealth behavior of the distribution,
Eq. (7) is continuous ine, and only the derivative with re- may be in work quite generally. Here, the free parameters are
spect ofe has a jump at=0. One may speculate about the apparently the wealth production and exchange, but in reality
fate of the singularity if we allowed and 8 not fixed pa- these parameters may be themselves tuned by a mechanism
rameters but random processes themselves. Most probablyhich fixes the position of the maximum of the wealth dis-
the singularity would vanish but final answer is left for future tribution, i.e., the lowest wealth compatible with survival.
work. However, there is still open question of the specific values
of the exponent, which are quite robust in different societies.
IV. CONCLUSIONS It seems, also on the basis of our results, that it cannot be
explained by the bare mechanism of economic exchange and
We formulated a model of wealth production and ex-some other ingredient, possibly of sociological origin, is re-
change, where agents randomly interact pairwise. Using thguired.
analogy with the mean-field version of the Maxwell model
for inelastic scattering of granular particles we obtain ana- ACKNOWLEDGMENTS
lytical results for the wealth distribution.

The dynamics of the model is governed by a kinetic equa- . I V\l’is.h to thank Paul l;rzpivsky_ and _ﬁl]' Ben—ll:laim for
tion for one-particle distribution function. We look for self- Stmu'ating comments and discussions. This work was sup-

similar scaling solutions, corresponding to redefining the uni orted by Project No. 202/01/1091 of the Grant Agency of

of wealth after each wealth increase. The form of these so-he Czech Republic.
lutions is given by a nonlocal differential equation, exactly
soluble only in the practically irrelevant case of net wealth
decrease. Therefore we turned to approximation schemes.

First, we looked at the behavior for large wealth. The tail Let us start with the special value=3/2. Here, Eq(9)
of the wealth distribution has a power-law form, and its ex-has an explicit solution in the form

APPENDIX: SYSTEMATIC EXPANSION
FOR SMALL € AND g

1 -3\B+178- 29897+ 1582+ 45— 455+ V3N (3-2VB) B(2VB+ 1)*(VB-1)°

€ (A1)
8 VB—3p+36% 7
|
However, the nonlocal differential equatién) still does not For general value ofv the variableg is expressed as a
yield explicit solution. Inverting the expressigAl) we get  series in two small parameteesand 7= €2(*~ 1), which co-
the following series expansion: incide only if «=3/2. Therefore, we can write
1. 1 1 7 113 -
_ -2~ 3, _4__" 5 6 7 _ 2 m+2(a—1)n A3
B=7€ 12716 122 T 2mep° 1O (A2 B=e 2, Bure (A3)
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and the various terms take variable precedence in the order
of smallness wherr—0, depending on the value @f. For (W) =Do(W) D, Ppp(W)em™ 2@ (A17)
the first several coefficients we have m.n=0

a—1 We assumebyo(w) = 1. The normalization must be indepen-
Boo= (A4)  dent of g, which can be written as
Bro=— 6 (A5)
Therefore, the lowest term obeys the equation
ol " o L Hogw=0 (a1
Ba=—|——] - (A6) 5 PoW)+| W= —— | Po(w)=0  (AL3)

Starting from the expansiofA3) we can convert the first which has the following solution satisfying the normalization
order nonlocal differential equatiorf7) for d(x) into (A12):

infinite-order local differential equation fab(w). The price (a—1)° 1—w

to pay for it is that the coefficients in the latter equation Do(w)= W‘l“’ex;(—). (A14)
contain the momentg, = [ ® (w)wkdw of the solution itself. I'(a) w

Indeed, we can write Indeed, it coincides with the result of E(L3).
The next two terms satisfy the following equations:

<i>((1—v+e)x)=|im exp(( ,8)x—> d(y), (A7)

—1 a—1
¢10(W) a=——— (A15)
d(Bx)= lim exr{ BX —) (A8)
Therefore, we obtain a linear combination of terms of the > $o(W)=— ;( > ) (w—1) (A16)

following form:

R ) which can be easily solved. We obtain
d™®(x) d"®(0)

xm+n (A9) a—1[{2a a—-1
dx™ dx’ hro(W) = — 3 ( 3 W V10>, (AL7)
which, after inverse Laplace transform, give rise to terms
2 [a—1\¢ 1
dmen bor(W)=—— <_> ( Inw+ —— V01) (A18)
(=)™ g WP (W), (A10) @) 2 w

and the constantsy,, v, are fixed by the normalization
However, the first two moments are fixed by definition. condition (A12). We find explicitly

Indeed, the normalization of the probability distribution fixes
the zeroth moment and the fixed average wealth, imposed by V0= @, (A19)
the scaling conditior(6) fixes the first moment, so that,
= u1=1. This consideration leads to the equations for lowest a
correction to the solutioril3) , which are free of unknown vor=In(a—1)=W(a)+ a—1" (A20)
higher moments.

Generally, the solution can be then expressed in the forrvhere W (x)=1""(x)/I'(x) is the logarithmic derivative of
of the series in powers of and €2(¢~ V) the gamma function.
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